Telegram Group & Telegram Channel
🚫 Что делать с пропущенными значениями перед нормализацией или стандартизацией признаков

Пропущенные значения (NaN, пустые ячейки) затрудняют масштабирование данных, потому что статистики вроде среднего, стандартного отклонения или минимума становятся некорректными. Поэтому пропуски нужно обработать до нормализации.

Основные варианты

1️⃣ Импутация (восстановление) пропущенных значений

Простые методы: среднее, медиана, мода.
Продвинутые: KNN, модели на деревьях, многократная импутация (Multiple Imputation).

2️⃣ Удаление строк с пропусками

Допустимо, если доля пропущенных значений очень мала.

3️⃣ Использование моделей, устойчивых к пропускам

Некоторые алгоритмы (например, XGBoost, CatBoost) умеют обрабатывать пропуски без предварительной импутации.

📌 Вывод

Пропуски надо обрабатывать до масштабирования.
Лучший подход — импутация на обучении, затем масштабирование по тем же правилам.
Не смешивайте статистики между train и test — это критично для честной оценки модели.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/980
Create:
Last Update:

🚫 Что делать с пропущенными значениями перед нормализацией или стандартизацией признаков

Пропущенные значения (NaN, пустые ячейки) затрудняют масштабирование данных, потому что статистики вроде среднего, стандартного отклонения или минимума становятся некорректными. Поэтому пропуски нужно обработать до нормализации.

Основные варианты

1️⃣ Импутация (восстановление) пропущенных значений

Простые методы: среднее, медиана, мода.
Продвинутые: KNN, модели на деревьях, многократная импутация (Multiple Imputation).

2️⃣ Удаление строк с пропусками

Допустимо, если доля пропущенных значений очень мала.

3️⃣ Использование моделей, устойчивых к пропускам

Некоторые алгоритмы (например, XGBoost, CatBoost) умеют обрабатывать пропуски без предварительной импутации.

📌 Вывод

Пропуски надо обрабатывать до масштабирования.
Лучший подход — импутация на обучении, затем масштабирование по тем же правилам.
Не смешивайте статистики между train и test — это критично для честной оценки модели.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/980

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Unlimited members in Telegram group now

Telegram has made it easier for its users to communicate, as it has introduced a feature that allows more than 200,000 users in a group chat. However, if the users in a group chat move past 200,000, it changes into "Broadcast Group", but the feature comes with a restriction. Groups with close to 200k members can be converted to a Broadcast Group that allows unlimited members. Only admins can post in Broadcast Groups, but everyone can read along and participate in group Voice Chats," Telegram added.

Библиотека собеса по Data Science | вопросы с собеседований from id


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA